Loss and Gain of Human Acidic Mammalian Chitinase Activity by Nonsynonymous SNPs

نویسندگان

  • Kazuaki Okawa
  • Misa Ohno
  • Akinori Kashimura
  • Masahiro Kimura
  • Yuki Kobayashi
  • Masayoshi Sakaguchi
  • Yasusato Sugahara
  • Minori Kamaya
  • Yoshihiro Kino
  • Peter O. Bauer
  • Fumitaka Oyama
چکیده

Acidic mammalian chitinase (AMCase) is implicated in asthma, allergic inflammation, and food processing. Little is known about genetic and evolutional regulation of chitinolytic activity of AMCase. Here, we relate human AMCase polymorphisms to the mouse AMCase, and show that the highly active variants encoded by nonsynonymous single-nucleotide polymorphisms (nsSNPs) are consistent with the mouse AMCase sequence. The chitinolytic activity of the recombinant human AMCase was significantly lower than that of the mouse counterpart. By creating mouse-human chimeric AMCase protein we found that the presence of the N-terminal region of human AMCase containing conserved active site residues reduced the enzymatic activity of the molecule. We were able to significantly increase the activity of human AMCase by amino acid substitutions encoded by nsSNPs (N45, D47, and R61) with those conserved in the mouse homologue (D45, N47, and M61). For abolition of the mouse AMCase activity, introduction of M61R mutation was sufficient. M61 is conserved in most of primates other than human and orangutan as well as in other mammals. Orangutan has I61 substitution, which also markedly reduced the activity of the mouse AMCase, indicating that the M61 is a crucial residue for the chitinolytic activity. Altogether, our data suggest that human AMCase has lost its chitinolytic activity by integration of nsSNPs during evolution and that the enzyme can be reactivated by introducing amino acids conserved in the mouse counterpart.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Insectivorous Bats Digest Chitin in the Stomach Using Acidic Mammalian Chitinase

The gastrointestinal tract of animals is adapted to their primary source of food to optimize resource use and energy intake. Temperate bat species mainly feed on arthropods. These contain the energy-rich carbohydrate chitin, which is indigestible for the endogenous enzymes of a typical mammalian gastrointestinal tract. However, the gastrointestinal tract of bat species should be adapted to thei...

متن کامل

Induced Acidic chitinase Expression and Scab-Resistant in Wheat Under Field Condition

Fusarium head blight (FHB) caused by Fusarium graminearum is responsible for billions of dollars in agriculture losses. The goal of the present study was evaluation the expression of acidic chitinase, one of PR proteins, in wheat defense response against different FHB induced treatments in 'Falat' as a highly susceptible and 'Sumai3' as a tolerant cultivar. These treatments contained fungi extr...

متن کامل

Analyzing Airway Inflammation with Chemical Biology: Dissection of Acidic Mammalian Chitinase Function with a Selective Drug-like Inhibitor

Acidic mammalian chitinase (AMCase) is produced in the lung during allergic inflammation and asthma, and inhibition of enzymatic activity has been considered as a therapeutic strategy. However, most chitinase inhibitors are nonselective, additionally inhibiting chitotriosidase activity. Here, we describe bisdionin F, a competitive AMCase inhibitor with 20-fold selectivity for AMCase over chitot...

متن کامل

Analyzing airway inflammation with chemical biology

'Analyzing airway inflammation with chemical biology: dissection of acidic mammalian chitinase function with a selective drug-like inhibitor' Chemistry and Biology, vol 18, General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users ...

متن کامل

Role of mammalian chitinases in asthma.

Asthma is a chronic inflammatory disease characterized by airway inflammation, mucus hypersecretion and airway hyperresponsiveness. Mechanisms underlying the pathogenesis of asthma are not fully understood. In recent years, there are mounting evidences demonstrating that mammalian chitinases may play a key role in mediating the T-helper 2 cell-driven inflammatory response that is commonly assoc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2016